
The Journal of High School Research 

Climate and Environmental Impacts of Artificial Intelligence
Siddhi Agrawal*

Submitted: 07 December 2024 Accepted: 07 December 2024 Publication date: 07 December 2024

ISSN: 3066-2664: DOI: 10.70671/2ft99c50

Abstract: The adverse effects of climate change on our environment and life have been of significant concern, and
this concern has become more significant because of recent extreme hurricanes and flooding in various parts of the
world. Artificial Intelligence (AI) based technologies are being adopted across all aspects of our life. One of the most
frequent arguments in support of AI is that AI-based tools can achieve significant improvements in efficiency, which
could translate into much better economic returns while optimizing the use of resources. However, the environmental
and carbon footprints of data centers training and facilitating the use of AI tools such as ChatGPT is enormous and is
increasing rapidly with explosive growth in AI-related tools. This paper presents a detailed discussion on both beneficial
and adverse aspects of AI with respect to its impacts on the climate and the environment based on a critical review of
several available studies.
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Introduction

Recent progress in artificial intelligence has been marked
by significant advancements across multiple domains, with
notable breakthroughs in generative AI, natural language
processing, and reinforcement learning. Models like Ope-
nAI’s GPT-4 have demonstrated a profound ability to
understand and generate human-like text. AI’s applica-
tions in areas such as healthcare have expanded the
ability to analyze vast health datasets beyond human
capabilities.1 Similarly, AI-driven systems in robotics are
becoming more adept at real-time decision-making, allow-
ing for greater autonomy in complex environments like
autonomous vehicles and industrial automation. Advance-
ments in multimodal AI to integrate text, images, and video
drive innovation in areas ranging from content creation to
personalized education.2

Climate change is driving a range of serious and inter-
connected environmental, economic, and social challenges
with profound effects on ecosystems and human livelihoods.
According to the Intergovernmental Panel on Climate
Change (IPCC), rising global temperatures have already led
to more frequent and intense extreme weather events, includ-
ing heatwaves, floods, and storms, which disproportionately
impact vulnerable populations.3 Studies have shown that
changes in precipitation patterns and the melting of glaciers
are altering water availability, jeopardizing food security, and
displacing millions of people due to sea level rise.4 Addition-
ally, biodiversity loss is accelerating as various ecosystems
face adverse stress from warming temperatures and habitat
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destruction, threatening species survival and their ecolog-
ical services.5 The economic costs of these impacts are
expected to be substantial, with some estimates suggesting
that unchecked climate change could reduce global GDP
by up to 10% by the end of the century.6 As the urgency
of addressing climate change deepens, global efforts toward
mitigation and adaptation are increasingly recognized as
critical for avoiding catastrophic consequences.

Recent developments in artificial intelligence offer a
unique opportunity to address many challenges associated
with climate change effects.7 However, there are also signif-
icant concerns about the adversarial impacts of AI on our
natural environment, primarily because of the large amounts
of energy and water consumed by the data centers hosting
AI tools. As per an estimate by Choo,8 data centers for
AI account for 2.5 to 3.7 percent of global greenhouse gas
emissions, exceeding even those of the aviation industry. The
possibility of AI in all modes of our activities has the poten-
tial to reduce up to 60% of energy-related CO2 emissions
in the coming years.9 However, the pace of development of
AI-related tools and data centers can undermine this target
severely because of hurdles with the effective implementation
of AI-based tools in time. As a comparative analysis by
Shumskaia,9 CO2 emissions during a round-trip flight from
New York to San Francisco are estimated to be around 163
kg/hour. Compared to this, the estimated carbon emission
for training one model with neural architecture is around
94 kg/hour. A comparative study by Strubell10 shows that
the percentage of renewal energy by Amazon-AWS, Google,
and Microsoft is 15%, 56%, and 32%, whereas their usage of
coal energy is 30%, 15%, and 31%, respectively. With recent
competition among top cloud computer providers to make
platforms such as ChatGPT freely available to the public
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and incorporate AI in all aspects of most of the commonly
used software, CO2 emission by data centers supporting AI-
related training and search tasks is probably already much
more extensive than other significant sources of CO2 emis-
sions. This aspect of CO2 emissions is currently not well
understood because of the nondisclosure of emissions by top
AI tools companies in a transparent manner.

Besides the carbon footprint, the water footprint of
AI also remains equally concerning. For example, training
GPT-3 in Microsoft’s state-of-the-art U.S. data centers can
directly evaporate 700,000 liters of clean freshwater.11 Glob-
ally, AI demand may be accountable for 4.2 to 6.6 billion
cubic meters of water withdrawal in 2027, which will be more
than the total annual water withdrawal of 4 to 6 Denmark or
half of the United Kingdom.11

Despite these concerns, according to a report by the
Pwc,12 AI is expected to transform both productivity and
GDP, and 45% of total economic gains by 2030 is expected
to come from product enhancements, stimulating con-
sumer demand fueled by greater product variety, increased
personalization, attractiveness and affordability over time.
Technologies related to AI are expected to value more than
$16 trillion by 2030, with the greatest boost of 26% and
14.5% in China and North America, respectively.

Potential Beneficial Impacts of AI on Power
Management

Although there are severe concerns about enormous carbon
footprint of AI-related tools because of very power demand
in data centers, AI-related tools also have a significant poten-
tial to reduce emissions by optimizing use of power in all
aspects of human activities. Some areas where potential ben-
efits in optimizing and reducing power derived from fossil
fuels are listed below.

• Smart Grids, Energy Efficiency, and Optimization of
Usage: AI has the potential to facilitate improve-
ment in energy efficiency and optimization of energy
usage through the development of smart grids, energy
demand and usage forecasting, and integration with
renewal energy sources. AI-powered smart grids can
optimize energy distribution, reduce energy losses,
and balance supply and demand. By predicting
power consumption patterns in real-time, AI can help
utilities manage energy resources more effectively
and reduce waste. This can be done by predicting
peak demand periods and automatically adjust-
ing consumption or price signals to reduce strain
on the power supply. Various AI techniques, such
as machine learning and predictive analytics, can
forecast electricity demand in real-time and adjust
consumption accordingly.13,14

• Energy Storage, Forecasting, and Grid Integration:
AI can improve the management of energy storage
systems, allowing renewable energy sources like solar
or wind to be better integrated into the grid by opti-
mizing when and how stored energy is used. AI can

also optimize the charging and discharging processes
of energy storage systems, predicting energy demand
and generation patterns and improving the overall
efficiency and reliability of the power grid. With the
increasing use of renewable energy sources (RES)
such as solar power in homes, there are significant
uncertainties for cloud-based energy storage man-
agement with renewable energy integration. AI-based
technologies can provide an estimation of day-ahead
energy needs so that energy generators using fossil
fuel-based plants can optimize resources to minimize
emissions of CO2.15

• Smart Appliances and IoT: AI is being used in smart
homes and appliances that can reduce energy con-
sumption by optimizing heating, cooling, lighting,
and appliance use based on real-time needs and pat-
terns, thus lowering overall electricity demand. In
the current state of technology, AI algorithms can
enable smart appliances to dynamically adjust their
operations based on real-time data, such as predict-
ing and responding to users’ behaviors, preferences,
and environmental conditions. AI techniques are
already being applied in smart heating, ventilation,
and air conditioning (HVAC) systems, lighting, and
appliances to reduce energy consumption by aligning
usage with actual needs.

• Energy and Carbon Emissions of Commercial Build-
ings: Office buildings are the most common type and
account for the highest electricity consumption (20%)
among all commercial buildings. The energy con-
sumption in office buildings is dominated by medium
office buildings, accounting for 70% of the total. A
study by Ding et al.16 has shown that adopting arti-
ficial intelligence could reduce energy consumption
and carbon emissions by approximately 8% to 19% in
2050. Combined with energy policy and low-carbon
power generation, it could approximately minimize
energy consumption by 40% and carbon emissions
by 90% compared to business-as-usual scenarios in
2050.

Potential Beneficial Impacts of AI on Water
Management

Water is used in all aspects of AI, including chip manufac-
turing. However, even excluding water usage due to supply
chains (water for chip manufacturing), AI data centers use
an enormous amount of water for both on-site cooling and
off-site electricity generation. Water consumption of global
AI may exceed 0.38–0.60 billion cubic meters, i.e., roughly
evaporating the annual water withdrawal of half of Denmark
or 2.5–3.5 Liberia. Therefore, AI models can, and must, take
social responsibility and lead by example in the collective
efforts to combat the global water scarcity challenge by
cutting their own water footprint.11 However, AI models can
also contribute to improved water footprint by enhancing
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water efficiency in other aspects of our lives, such as irriga-
tion, water distribution, monitoring, and treatment.

• Water Conservation and Efficiency Through Smart
Irrigation: Artificial intelligence (AI), along with
machine learning and data analytics, can be used to
optimize irrigation by integrating real-time data on
weather patterns, soil moisture levels, and crop water
requirements. Smart irrigation systems using AI can
reduce water wastage by providing precise irrigation
schedules and quantities, leading to more efficient
water use in agriculture. The outcome is not only
water conservation but also improved crop yield.17,18

• Water Pipe Leak Detection: Artificial intelligence
(AI) can be used for detecting and localizing leaks
in water distribution systems, such as pipelines, to
minimize water loss. In this type of work, machine
learning, neural networks, and data analytics pro-
cess sensor data from pipeline monitoring systems
to identify abnormal patterns indicative of leaks,
which results in faster response times for repairs and
reduced water wastage in urban and industrial water
systems.19

• Water Usage Monitoring: AI tools can be used in
water usage monitoring in both industries and house-
holds by using smart sensors, AI algorithms, and
data analytics to track water consumption patterns
in real-time, allowing consumers and businesses to
adjust their usage and reduce waste. AI-driven sys-
tems can identify inefficiencies, detect leaks, and
provide insights that promote responsible water con-
sumption, contributing to better water management
in smart cities.

• Predictive Maintenance During Water Quality and
Treatment: AI models can predict maintenance needs
in water treatment plants and wastewater facili-
ties, preventing breakdowns and ensuring consistent
water quality. AI models can analyze historical
data, sensor readings, and operational parameters
to predict equipment failures before they occur.
This predictive capability helps to reduce unexpected
breakdowns, lower maintenance costs, and ensure
consistent water quality by enabling timely interven-
tions and optimizing maintenance schedules.

• Water Quality Monitoring: AI can analyze data from
sensors to detect contaminants and pollutants in
water, such as heavy metals, bacteria, and other
harmful substances, enabling more rapid responses to
water quality issues and reducing risks to health. By
identifying risks to public health and improving water
safety, AI-driven monitoring systems are shown to
enhance water quality management.

• Climate and Hydrological Predictions of Drought: AI
can be used for drought prediction and forecast-
ing by analyzing meteorological, hydrological, and
environmental data through machine/deep learning.
This can result in improving the accuracy and lead
time of drought predictions, enabling more effective
water management practices and policy decisions.

By predicting droughts in advance, governments and
organizations can allocate resources more efficiently
and implement strategies to mitigate the impacts of
water scarcity.

• Flood Prediction: AI can be used in flood prediction
systems by analyzing weather patterns, hydrological
data, and other environmental variables to forecast
floods through machine learning and other AI tech-
niques. This can result in helping to manage water
resources more effectively, assisting in preventing
damage to infrastructure and supporting emergency
preparedness and response in flood-prone areas.
AI tools can optimize flood prevention measures,
contributing to better decision-making and policy
implementation for flood resilience.

Adverse Climate and Environmental Impacts
of AI

As noted previously, the training of complex AI models,
particularly deep learning networks, requires immense com-
putational power, often running on large-scale data centers
that consume vast amounts of electricity. If the energy
powering these data centers is derived from non-renewable
sources, it can lead to a substantial increase in carbon
emissions, contributing to climate change. Additionally, the
growing demand for AI technologies is directly linked to an
increase in hardware production and e-waste, exacerbating
environmental challenges related to resource extraction and
disposal.

Energy Consumption and Carbon Emissions: Training
state-of-the-art AI models, such as deep neural networks,
demands significant computational resources, which in turn
require considerable energy consumption. For instance,
training models like Chat GPT can take weeks of continuous
processing across hundreds of GPUs or specialized hard-
ware, such as TPUs (Tensor Processing Units), housed in
data centers. A study by Strubell et al.10 has estimated that
training a large-scale language model could produce as much
carbon as five times the lifetime emissions of an average
car. The environmental cost of these models is compounded
when fossil fuels are used to generate electricity to power
the data centers. As AI models grow in size and complexity,
their carbon footprint increases, raising concerns about the
sustainability of current AI research practices.10

E-Waste and Resource Depletion: AI’s rapid evolution
also contributes to the environmental burden through hard-
ware production and the disposal of outdated technology.
Data centers, which house the servers and other equip-
ment used for training and deploying AI models, require
high-performance hardware that often has a limited use-
ful lifespan due to rapid technological advancements. This
contributes to the generation of electronic waste (e-waste),
which is difficult to recycle and contains toxic materials. The
extraction of rare earth metals and other materials required
for AI hardware production also has adverse environmental
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impacts, contributing to deforestation, pollution, and the
depletion of natural resources.

Water Usage in Data Centers: Data centers, in addition to
their high energy demands, also require significant amounts
of water for cooling purposes. Liquid cooling systems are
essential to prevent hardware from overheating during the
extensive computations involved in AI training. As the
demand for AI grows, so does the water consumption of
data centers, raising concerns about their water footprint,
especially in regions where water resources are already under
stress. Another issue is the apparent conflict between reduc-
ing carbon and water footprints. Optimization of carbon
footprints may lead to locating the data centers in hot areas
where solar power can be derived from extended exposure
to the sun. However, water usage by data centers in these
regions may be of much significant concern because of the
already hot climate and scarcity of water in these areas.

Discussion and Conclusion: Solutions and
Mitigation Strategies

Efforts are being made to mitigate the environmental impact
of AI, particularly by shifting towards greener and more
sustainable AI practices. Optimizing algorithms for energy
efficiency, investing in energy-efficient hardware, and tran-
sitioning data centers to renewable energy sources can help
reduce the carbon footprint of AI. Google, for instance,
has committed to using 100% renewable energy for its data
centers and aims to achieve carbon-free operations by 2030.
Additionally, researchers are exploring ways to make AI
models more efficient, thereby reducing the need for vast
computational power.

Besides these initiatives, a lot can be done by com-
panies and the general population using AI-based tools,
particularly large models, such as ChatGPT, to reduce envi-
ronmental and climate impact. Transparency by companies
on the carbon, climate and environmental footprint of AI
technologies will educate general populations.

Besides training in large datasets, the use of AI tools
by people worldwide has been seen to cause a significant
climate and environmental footprint. It is noted by Kerr20

that “One query to ChatGPT uses approximately as much
electricity as could light one light bulb for about 20 minutes,”
he says. “So, you can imagine with millions of people using
something like that every day, that adds up to a really large
amount of electricity.” Awareness about this among the
general population will encourage people not to use these
large AI models for trivial and mundane tasks. Specifically,
AI tools companies should provide, as a warning to a user of
AI tool, such as ChatGPT, on the amount of greenhouse gas
emissions generated for per hour use of the tool.

The carbon and environmental footprint of AI can also
be reduced by locating large data centers in regions with a
large availability of renewable energy. The heat generated by
data centers can be harvested for applications such as heating
homes. For example, the largest Data Center in Finland will
heat about 20 thousand houses. This project will reduce CO2

emissions by 103 thousand tons, which is equivalent to 55
thousand vehicles.9

With explosive growth in the development, deployment,
and usage of AI tools and a relatively slower pace of reduc-
tion in carbon and environmental footprint, the overall
impact of AI on emissions will become significantly worse
and reach a plateau before reduction. Measures such as
improved transparency by companies training and develop-
ing AI tools, increased reliance on renewal energy sources,
more efficient computer hardware and algorithms/software,
efficient AI models, innovative cooling methods not relying
on water for cooling and collective understanding of the
public on the scale of energy and environmental problems
posed by AI are necessary towards developing a sustainable
AI. AI should not be used as a tool for trivial work but
should only be used for difficult and important tasks where
the return is significantly higher than the cost to the environ-
ment. Companies should also not make AI models and tools
freely available to prevent their abuse by the public.
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