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Abstract: Background: Autism spectrum disorder (ASD) is most often diagnosed using behavioral evaluations, which can
vary between clinicians. Brain imaging, combined with machine learning, may help identify more objective patterns linked
to ASD. In this research, magnetic resonance imaging (MRI) data from the publicly available Autism Brain Imaging
Data Exchange I (ABIDE 1) dataset (n = 1,112) were used to test two approaches for classifying individuals with ASD
and typically developing control participants. Both groups were drawn from the same ABIDE I dataset, which includes
MRI scans from individuals diagnosed with ASD as well as neurotypical individuals without any major neurological or
psychiatric conditions. The first approach used a three-dimensional convolutional neural network (CNN) trained end-to-
end, while the second employed a hybrid method in which the CNN served as a feature extractor followed by a support
vector machine (SVM) classifier. Results showed that the baseline CNN achieved moderate performance, whereas the
hybrid CNN + SVM model demonstrated higher overall accuracy and produced more balanced results between ASD and
control groups. These findings indicate that separating feature extraction from classification can improve performance
and reduce bias between diagnostic categories. Overall, this study suggests that deep learning methods may enhance the
reliability and objectivity of MRI-based research on ASD.
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Introduction and spatially distributed neuroanatomical differences that
may not be evident with traditional analysis. CNNs have
Autism spectrum disorder (ASD) is a neurodevelopmental shown strong performance in medical imaging, includ-
condition that affects social communication, behavior, and ing mammography,* brain tumor grading,’ and diabetic
sensory processing.' Diagnosis currently relies on behav- retinopathy screening.® These successes suggest that CNNs
ioral assessments such as the Autism Diagnostic Observation are well suited for ASD research, where subtle structural
Schedule 2 (ADOS-2) and the Autism Diagnostic Interview- variations across multiple brain regions must be identified.

Revised (ADI-R). While these tools are widely used, they
are usually subjective and may depend on individual inter-
pretation. As a result, diagnostic outcomes may vary across
evaluators and settings.’

The need for more objective diagnostic methods has
grown alongside rising prevalence rates. According to data
from the U.S. Centers for Disease Control and Prevention
(CDC), approximately one in 150 children were identified
with ASD in 2000, compared to one in 36 by 2020 (Table 1).
This increasing prevalence highlights the importance of
developing tools that can support early and consistent iden-

Despite their potential, CNNs face several chal-
lenges. They require large datasets to achieve reliable
generalization,” yet many neuroimaging studies in ASD
involve only a few hundred participants. Models are also
highly sensitive to variability in scanner hardware and
acquisition protocols. These differences can produce site-
specific artifacts that may be mistaken for disorder-related
features.® In addition, CNNs often function as “black
boxes,” with limited interpretability even when tools such
as saliency maps or class activation methods are applied.’
These limitations complicate efforts to build clinically robust

tification.

Neuroimaging offers one possible path toward objec- biomarkers apd I.li.ghlight the importance of evaluating
tive biomarkers. Advances in machine learning, particularly model generalizability.
deep learning methods such as convolutional neural net- This study investigates whether CNNs applied to struc-
works (CNNs), offer new opportunities to capture subtle tural MRI can distinguish individuals with ASD from

typically developing controls (TDCs). A baseline end-to-end

CNN was compared to a hybrid framework in which CNN-
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Table 1. Rates of ASD diagnosis®

Surveillance Birth year Number of sites Combined prevalence per 1,000  This is about 1 in X
year reporting children (Range across sites) children
2020 2012 11 27.6 (23.1-44.9) 1 in 36
2018 2010 11 23.0 (16.5-38.9) 1l in 44
2016 2008 11 18.5 (18.0-19.1) 1 in 54
2014 2006 11 16.8 (13.1-29.3) lin 59
2012 2004 11 14.5 (8.2-24.6) 1 in 69
2010 2002 11 14.7 (5.7-21.9) lin 68
2008 2000 14 11.3 (4.8-21.2) 1l in 88
2006 1998 11 9.0 (4.2-12.1) lin 110
2004 1996 8 8.0 (4.6-9.8) lin 125
2002 1994 14 6.6 (3.3-10.6) lin 150
2000 1992 6 6.7 (4.5-9.9) lin 150

Table 2. Demographic and clinical characteristics of participants across ABIDE I sites'’

Site N % ASD % Male Age (Mean
=+ Std)
California Institute of Technology 23 47.8 78.3 27.1£5.8
Carnegie Mellon University 32 40.6 78.1 26.8 +9.8
Kennedy Krieger Institute 44 25.0 77.3 10.1 +1.2
University of Leuven 62 46.8 88.7 18.1+5.0
Ludwig Maximilians University Munich 34 5.9 88.2 253+£10.3
NYU Langone Medical Center 122 434 73.0 13.8+5.8
Olin, Institute of Living at Hartford Hospital 36 55.6 86.1 16.8 £ 3.5
Social Brain Lab BCN NIC UMC Groningen 17 11.8 100 327+7.0
and Netherlands Institute for Neurosciences
San Diego State University 24 12.5 70.8 141+19
Trinity Centre for Health Sciences 35 28.6 100 16.8 £3.5
University of California, Los Angeles 102 54.9 88.2 13.1£25
University of Michigan 129 41.1 81.4 142 +3.3
University of Pittsburgh School of Medicine 56 S1.8 85.7 18.8 £ 6.9
University of Utah 100 57.0 100 22.1+7.7
School of Medicine
Yale Child Study Center 34 17.7 70.6 13.1+28

Note: Values are reported as sample size (N), percentage diagnosed with ASD, percentage male, and mean age + standard deviation.

generalization, thereby advancing progress toward objective
neuroimaging biomarkers for ASD.

Methodology

Dataset

This study used structural magnetic resonance imaging
(sMRI) data from the Autism Brain Imaging Data Exchange
I (ABIDE I), a publicly available repository aggregating neu-
roimaging and clinical data from 17 international research
sites, including both individuals diagnosed with ASD and
TDCs. TDCs are participants who do not have ASD or

any other major neurological, developmental, or psychiatric
conditions. They are considered neurotypical and serve as
the comparison group for evaluating differences relative to
individuals with ASD.

In total, 1,112 participants were included, comprising
539 individuals with ASD and 573 controls. Participant
ages ranged from childhood to adulthood (mean site ages
between ~10 and ~33 years), and the sample reflected the
known male predominance in ASD. Table 2 summarizes
the distribution of participants across contributing sites,
including sample sizes, sex ratios, diagnostic proportions,
and mean ages.
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Structural MRI provides high-resolution anatomical
images of the brain, capturing cortical thickness, white mat-
ter, and subcortical morphology. This modality was selected
because it offers stable, reproducible measures of brain
anatomy suitable for machine learning pipelines.

Figure 1. Example of a T1-weighted structural
magnetic resonance imaging scan from a typically
developing control participant in the Autism Brain

Imaging Data Exchange I dataset''

Preprocessing

Before analysis, raw MRI scans underwent extensive prepro-
cessing to account for heterogeneity across the 17 acquisition
sites in ABIDE I and to prepare the data for input into
CNNSs. These steps were essential for reducing scanner-
related variability while preserving biologically meaningful
structural features relevant to autism. The preprocessing
pipeline included the following stages:

1. Skull Stripping: Non-brain tissue such as scalp,
skull, and dura was removed using the HD-BET
algorithm,'?> a deep-learning based brain extraction
tool. This ensured that subsequent analyses focused
exclusively on brain tissue.

2. Spatial Normalization: Each scan was registered to
the MN152 standard brain template using Advanced
Normalization Tools. This step placed all participant
images into a common stereotactic space, aligning
anatomical structures across subjects and reducing
variation due to head position or scanner orientation.

3. Intensity Normalization: MRI intensity values vary
systematically across scanners and acquisition pro-
tocols, which can introduce site-specific artifacts
into multi-site datasets such as ABIDE. To miti-
gate these effects, voxel intensities were normalized
using a histogram standardization. This method aligns
the intensity distribution of each subject’s scan to
a common reference distribution, thereby reducing
scanner-related variability while preserving biologi-
cally meaningful signals.

Formally, each voxel intensity / was transformed as:
I'=Fy ' (F()) (6]
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where F(1) is the cumulative distribution function (CDF) of
the subject’s intensity histogram, and F,;fl is the inverse CDF
of a chosen reference histogram (in this case, derived from
the median intensity distribution across all participants).

This mapping ensures that intensities are rescaled consis-
tently across sites, preventing the CNN from inadvertently
learning scanner differences instead of ASD-related features.

4. Resampling and Cropping: Following normalization,
volumes were resampled from their original native
resolution (approximately 256 x 256 x 160 voxels at
1 mm isotropic spacing, varying by site) to a uniform
resolution of 96 x 96 x 96 voxels. This downsampling
provided standardized inputs for the CNN, balancing
computational efficiency with preservation of fine-
grained neuroanatomical detail. Cropping around the
brain minimized empty space and further reduced
computational overhead.

5. Quality Control: Following preprocessing, all scans
were visually inspected to confirm successful skull
stripping, registration, and normalization. Scans that
failed preprocessing were excluded from further
analysis.

In addition to the individual preprocessing steps, an
overall schematic of the pipeline was constructed to illustrate
the sequential workflow from raw MRI scans to the finalized
dataset. Fig. 5 highlights the integration of skull stripping,

Original MR

Skull-Stripped MRI

Figure 2. Comparison between an original magnetic

resonance imaging scan (left) and the same scan after

skull stripping (right), showing removal of non-brain
tissue

Skid-Strpped (Unregistered) Aegisterad 1o MNI

Figure 3. Magnetic resonance imaging scan after
skull stripping (left) compared with the same scan
registered to the MNI template (right)
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Figure 4. Example of registered magnetic resonance imaging scans across multiple participants after preprocessing. All
scans were visually inspected to confirm preprocessing quality

Skull stripping
(HD-BET)

Spatial normalization

Raw MRI —> (ANTs, MNI152)

Intensity
normalization

Resampling

(967 voxels) — Final dataset

Figure 5. Preprocessing pipeline for structural magnetic resonance imaging scans

spatial normalization, intensity normalization, and resam-
pling into a standardized process that ensured comparability
across participants and sites.

Model architectures

Two classification approaches were implemented to investi-
gate the utility of CNNs for distinguishing individuals with
ASD from TDC. The first approach consisted of an end-
to-end 3D CNN trained directly on preprocessed structural
MRI scans. The second approach adopted a hybrid frame-
work, in which CNNs served as feature extractors and the
derived representations were classified using an SVM.

Baseline End-to-End CNN. The baseline model was a
three-dimensional (3D) CNN designed to learn spatially dis-
tributed features across the whole brain. Each input volume
had dimensions of 96 x 96 x 96 voxels after preprocessing.

The architecture comprised multiple convolutional layers
that scanned the MRI volumes with small filters to detect
local structural patterns. Each convolutional operation was
followed by a rectified linear unit (ReLLU) activation, intro-
ducing nonlinearity and enabling the network to capture
more complex features. Max-pooling layers were interleaved
to downsample the feature maps, reducing dimensionality
while retaining salient information.

The final convolutional output was flattened into a 1D
feature vector and passed through fully connected layers,
which combined information across the brain. The last stage
of the network performed classification using a softmax
function, which converted the outputs into probabilities for
ASD versus control.

91325007-4

Formally, the classifier first computed a pair of unnor-
malized values, one for ASD and one for control, through a
linear transformation:

z=Wx+b (2)

where x is the feature vector, W and b are learned param-
eters, and z represents unnormalized class scores. These
values, also known as logits, represent unnormalized class
scores that can be interpreted as the model’s internal evi-
dence for ASD versus control. At this stage, the scores are
not probabilities and only become meaningful once trans-
formed by the softmax function:

Z

o~ € .

Vi = Ef:lé’zj’ ie {1, 2} 3)
where y is the true diagnostic label (ASD or control). Dur-
ing training, the model compared its predicted probabilities
with the true labels and adjusted its parameters to reduce
errors. This learning process was optimized using the Adam
algorithm. To improve generalization and prevent the model
from fitting noise in the data, dropout was applied to ran-
domly deactivate some connections during training, and
batch normalization was used to stabilize and speed up
learning.

The complete architecture of the baseline 3D CNN is
summarized in Fig. 6, which highlights the sequential flow
of operations from raw MRI input to diagnostic prediction.

Hybrid CNN + SVM. To improve generalization, the
CNN was restructured to act as a feature extractor rather
than a full classifier. After convolution, activation (ReLU),
and pooling, the final convolutional output was flattened
into a one-dimensional feature vector. Instead of passing
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Figure 6. General architecture of the baseline three-dimensional convolutional neural network

End-to-End CNN {gglp;h” s 2 Eof-['goﬁnZELu —=| Fully Connected [—| Softmax Classifier |—| ASD vs. Control
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Hybrid CNN+SVM (96° MRI) — + Pooling ™| Feature Vector (RBF Kernel) [—=| ASD vs. Control

Figure 7. Comparison of end-to-end convolutional neural network (CNN) and hybrid CNN + SVM architectures

this vector through dense layers and a softmax classifier, it
was output to an SVM. The rationale was that the CNN
could capture complex anatomical features from the MRI
scans, while the SVM could provide a more robust separa-
tion between ASD and control participants in the resulting
feature space.

Formally, the SVM aimed to find a decision bound-
ary that maximized the margin between classes. This was
achieved by solving the following optimization problem:

) 1 n
minyps IWIP+C Y&

i=1

4)

subject to
yiw-x;+b)>1-¢§,>0 (5)

where x; is the CNN-derived feature vector for subject i,
yie{—1,+1} is the class label (control or ASD), w and
b define the separating hyperplane, and &; are slack vari-
ables that allow some misclassifications. The regularization
parameter C controls the trade-off between maximizing the
margin and penalizing errors. A radial basis function (RBF)
kernel was employed to allow the SVM to capture nonlinear
class boundaries in the high-dimensional feature space.

The overall differences between the two classification
strategies are illustrated in Fig. 7. In the end-to-end CNN,
MRI volumes are processed through convolutional layers,
fully connected layers, and a softmax classifier to produce
diagnostic probabilities. In contrast, the hybrid CNN -+
SVM model uses the CNN only to extract features, which
are then classified by an SVM with an RBF kernel. This
separation of feature learning from classification highlights
the alternative pathways by which MRI data can be mapped
to diagnostic predictions.

Data partitioning and leakage control

To ensure fair evaluation and to mitigate the influence of
site-specific artifacts, data partitioning was performed using
a controlled and reproducible strategy. All 1,112 participants
were divided into training, validation, and test subsets into
a 70:15:15 ratio. Because the ABIDE 1 dataset combines
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scans acquired from 17 independent research sites, each with
unique scanner models, acquisition parameters, and pop-
ulation demographics, subjects originating from the same
site were kept within the same split. This site-based group-
ing prevented the model from exploiting scanner-dependent
intensity patterns or geometric characteristics, which could
otherwise lead to artificially inflated performance.

With each site-based partition, stratification was per-
formed according to the diagnostic label to preserve the
ratio of individuals with ASD and TDCs across all subsets.
This ensured that each data split reflected the global class
distribution of the entire cohort. The partitioning process
was implemented through a group-aware splitting procedure
that used the site identifier as the grouping variable.

Nested cross-validation with five outer folds was applied
to the training data to provide unbiased model selection and
performance estimation. The inner loop of this procedure
was used to tune hyperparameters such as learning rate,
weight decay, and SVM kernel parameters, while the outer
loop evaluated generalization to unseen data. This approach
reduced the likelihood of overfitting and provided a more
stable estimate of expected model performance on indepen-
dent samples.

All preprocessing operations that required data-
dependent fitting, including histogram standardization,
intensity normalization, and feature scaling, were restricted
to the training data. Parameters derived from the training
set were subsequently applied to the validation and test
sets to prevent any inadvertent data leakage. To ensure
reproducibility, the random seed was fixed to the same value
across all computational environments, including Python,
NumPy, TensorFlow, and scikit-learn. This ensured that
data partitioning and model initialization were identical
across repeated experiments.

This partitioning framework provided a rigorous
structure for evaluation that minimized data leakage
and enhanced reproducibility. The resulting methodology
ensured that the trained models were evaluated under
conditions that accurately reflected their generalizability to
unseen sites and populations.
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Class imbalance handling

The ABIDE I dataset contains an unequal number of indi-
viduals diagnosed with ASD and TDC:s, reflecting the higher
prevalence of TDC participants across several contributing
sites. This imbalance can bias the model toward predicting
the majority class and may result in artificially elevated accu-
racy without a corresponding improvement in sensitivity to
ASD. To mitigate this effect, the training procedure incor-
porated multiple strategies that adjusted for class frequency
while preserving the natural diagnostic proportions in the
validation and test sets.

For the CNN, class imbalance was addressed by
introducing class-weighted loss optimization. The binary
cross-entropy loss function was weighted inversely to class
frequency so that errors on ASD samples contributed more
strongly to the total loss than errors on TDC samples. The
class weight for each label was computed using the following
formula: N

We=5 N (6)
where N is the total number of samples in the training
set and N, is the number of samples belonging to class
c. This weighting ensured that both classes exerted equal
influence on parameter updates during backpropagation,
despite unequal sample counts. The weighting scheme was
applied only during the training phase and was not extended
to the validation or test subsets.

For the hybrid CNN + SVM framework, the extracted
feature vectors were classified using an SVM trained with
the parameter setting class_weight = “balanced,” which
automatically adjusts the penalty parameter C for each class
in proportion to the inverse of its frequency. This adjust-
ment prevents the decision boundary from being dominated
by the majority class and promotes balanced classification
performance across the ASD and TDC groups. During
hyperparameter tuning, the weighting was maintained con-
stant across all inner-fold splits to ensure comparability of
performance metrics.

No oversampling, undersampling, or synthetic sample
generation was performed, as such methods can distort
the underlying neuroanatomical distribution and introduce
unrealistic structural variability. Instead, the chosen weight-
ing approach preserved the integrity of the original data
while compensating for unequal representation through
algorithmic adjustments in the loss and margin functions.
This method has been shown in prior neuroimaging studies
to maintain biological validity while improving sensitivity to
underrepresented diagnostic categories.

Through these weighting procedures, the impact of class
imbalance was effectively reduced, allowing the models to
focus on meaningful neuroanatomical differences associated
with ASD rather than on frequency-driven biases.

Data augmentation

To improve model generalization and reduce overfitting,
controlled data augmentation techniques were applied dur-
ing training. Augmentation introduces controlled variability
into the training samples, allowing the model to become
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more robust to minor spatial and intensity variations that
naturally occur across different MRI acquisitions. In the
context of neuroimaging, however, augmentation must be
applied conservatively to avoid generating anatomically
implausible representations of brain structure.

Each training volume underwent random spatial trans-
formations that preserved the overall geometry of the brain
while introducing slight variability in orientation and scale.
Specifically, 3D rotations were sampled uniformly within
£7.5° around each anatomical axis, and isotropic scaling
factors were randomly drawn from the range of 0.95 to 1.05.
These transformations simulate small positional differences
that can arise from head alignment or scanner calibration
without distorting cortical or subcortical morphology. All
augmented images were generated on-the-fly during train-
ing, ensuring that no identical input was seen twice by the
network and that storage requirements remained manage-
able.

No left-right flipping or nonlinear deformations were
applied, as these operations could disrupt hemispheric asym-
metries that are biologically meaningful in autism-related
neuroanatomical studies. Similarly, intensity augmentations
such as histogram perturbations or Gaussian noise injection
were avoided to prevent confounding effects on voxel-level
contrast, which may represent diagnostically relevant fea-
tures.

All augmentation procedures were confined strictly to
the training subset and were not applied to the validation
or test data. This restriction maintained a clear separation
between model optimization and evaluation, ensuring that
reported performance metrics reflected genuine generaliza-
tion rather than adaptation to artificial data variability. The
augmentation pipeline was implemented using TensorFlow’s
built-in 3D transformation utilities, with parameters verified
through visual inspection to confirm anatomical plausibility.

These carefully controlled augmentation procedures
ensured that the model was exposed to realistic spatial vari-
ability, enhancing robustness to inter-site differences and
improving stability during training while maintaining the
integrity of neuroanatomical structures.

CNN training details

The baseline 3D CNN described in Section 2.3 was trained
to distinguish individuals with ASD from TDCs using the
preprocessed MRI volumes as input. The training proce-
dure was designed to optimize classification performance
while minimizing overfitting and ensuring stable conver-
gence across multiple folds of cross-validation.

Training was conducted using the Adam optimization
algorithm, which adaptively adjusts learning rates based on
estimates of the first and second moments of the gradi-
ents. The initial learning rate was set to 1 x 107, and the
exponential decay rates for the first and second moment
estimates were set to 0.9 and 0.999, respectively. To improve
convergence and prevent stagnation at local minima, a learn-
ing rate reduction strategy was employed. The learning rate
was halved if the validation loss failed to improve after five
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consecutive epochs, with a minimum learning rate threshold
of 1 x 107¢,

The model was trained with a batch size of 8§ for a maxi-
mum of 100 epochs per fold. An early stopping mechanism
was implemented to terminate training when the validation
loss did not improve for 10 consecutive epochs, preventing
unnecessary computation and reducing the risk of overfit-
ting. The model state corresponding to the epoch with the
highest validation area under the receiver-operating charac-
teristic curve (ROC-AUC) was preserved for evaluation.

To improve model regularization, several additional tech-
niques were incorporated. A dropout rate of 0.3 was applied
to the fully connected layer, randomly deactivating a frac-
tion of neurons during training to promote redundancy and
prevent co-adaptation of features. L2 weight regularization
with a coefficient of 1 x 10~° was applied to the convolu-
tional kernels to penalize overly large weights and encourage
smoother representations. Batch normalization was inserted
after each convolutional layer to stabilize gradient propaga-
tion, accelerate convergence, and reduce internal covariate
shift. The activation function used throughout the network
was the ReLU, chosen for its computational efficiency and
ability to mitigate vanishing gradients.

The model was implemented in TensorFlow using the
Keras high-level API. Training was conducted on a work-
station equipped with an NVIDIA RTX 3080 GPU (10 GB
VRAM) and 32 GB of system memory. The computational
environment was configured with fixed random seeds across
Python, NumPy, TensorFlow, and scikit-learn to ensure full
reproducibility. Training progress was monitored using Ten-
sorBoard to visualize learning curves, loss trajectories, and
AUC performance across epochs.

This training configuration achieved a balance between
computational efficiency and model generalization. The
combination of adaptive learning rates, regularization tech-
niques, and early stopping contributed to stable convergence
across folds while preserving sensitivity to diagnostically rel-
evant neuroanatomical patterns in the structural MRI data.

Hybrid SVM training and tuning

In the hybrid classification framework, the CNN described
in Section 2.3 served as a fixed feature extractor, and an SVM
was subsequently trained to perform the final diagnostic
classification. This approach was designed to leverage the
representational strength of deep learning while incorporat-
ing the interpretability and stability of traditional machine
learning classifiers. By separating feature extraction from
classification, the hybrid pipeline allowed the CNN to cap-
ture high-dimensional neuroanatomical patterns, while the
SVM focused on optimizing class separation within the
resulting feature space.

The SVM classifier was trained using an RBF kernel,
which projects data into a higher-dimensional space to cap-
ture nonlinear relationships between features. A grid search
was employed to identify the optimal hyperparameters for
the regularization parameter C and the kernel coefficient y.
Specifically, C was explored in the set {0.1, 1, 10, 100}, and
y was explored in the set {1 x 1074, 1 x 1073, 1 x 1072, I x
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10~'}. The grid search was performed within the inner loop
of the nested cross-validation framework described in Sec-
tion 2.4, using validation AUC as the selection criterion. The
parameter combination yielding the highest mean validation
AUC was retained for the final model evaluation on the outer
folds.

To account for the class imbalance present in the dataset,
the SVM was trained with class_weight = “balanced,”
which automatically adjusts the penalty parameter for each
class in inverse proportion to its frequency. This configu-
ration ensured that both diagnostic categories contributed
equally to the optimization of the separating hyperplane.
The optimization was performed using the /ibsvm backend in
scikit-learn, with a maximum of 10,000 iterations per model
to guarantee convergence.

Following training, the learned decision function was
applied to the test set to generate continuous decision scores.
These scores were later converted to probabilistic estimates
using Platt scaling, providing interpretable confidence val-
ues for each prediction. The combination of CNN-based
feature extraction and SVM-based classification yielded a
robust and interpretable hybrid framework that balanced
nonlinear representational power with well-calibrated deci-
sion boundaries.

Experimental Evaluation

Evaluation metrics and procedure

Model performance was assessed using the nested cross-
validation framework described in Section 2.4. The outer
loop provided unbiased estimates of generalization perfor-
mance, while the inner loop was used for hyperparameter
tuning. For each outer fold, the model was trained exclu-
sively on the training subset, validated on a held-out portion
of the training data, and evaluated on an independent test
subset that contained sites not used in model optimization.
This design ensured that performance reflected the model’s
ability to generalize across imaging sites and acquisition
conditions rather than memorizing site-specific patterns.
The primary evaluation metric was the ROC-AUC,
which quantifies the model’s ability to discriminate between
ASD and TDC participants across classification thresholds.
ROC-AUC was selected because it provides a threshold-
independent measure and is robust to class imbalance.
Secondary metrics included overall accuracy, macro F1-
score, precision, recall (sensitivity), and specificity. The area
under the precision-recall curve was also computed to
further characterize model performance under class imbal-
ance, emphasizing sensitivity to ASD participants. Accuracy
represents the proportion of correctly classified instances
among all samples. Precision (also known as positive predic-
tive value) measures the proportion of true positives among
all predicted positives, indicating how reliable positive pre-
dictions are. Recall or sensitivity quantifies the proportion of
actual positives correctly identified by the model. Specificity
measures the proportion of actual negatives correctly identi-
fied. The macro F1-score is the harmonic mean of precision
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and recall, averaged equally across all classes, providing a
balanced view of performance under class imbalance.

From a diagnostic perspective, sensitivity and specificity
are the most critical metrics: high sensitivity ensures that
true cases (e.g., individuals with ASD) are correctly detected,
minimizing false negatives, while high specificity ensures that
non-cases are not mistakenly labeled as positive.

To verify stable optimization, training and validation
learning curves were recorded for every outer fold. Figs. 8—
11 show representative mean =+ standard deviation (SD)
learning curves across five-folds for both the baseline CNN
and the CNN feature extractor used in the hybrid CNN
— SVM framework. Each curve includes per-fold traces
(faint lines) and a bold mean trajectory with shaded 1 SD
ribbons. The dashed vertical line denotes the epoch of peak
mean validation AUC (early stopping point). Curves demon-
strate smooth convergence with modest train—validation
gaps, indicating effective regularization and minimal overfit-
ting across sites.

Baseline 3D CNN — Loss (Train vs Val)

— mean train loss

0.40

mean val loss

0.35

best mean val AUC @ epoch 60

0.30

"
g 0.20
9

0.15

0.05

0 10 20 30 0 50 60
Epoch
Figure 8. Mean + SD training and validation loss
across five outer folds. The dashed line indicates the
epoch of peak validation area under the curve (AUC)

Baseline 3D CNN — AUC (Train vs Val)
0.90

0.85
0.80

0.751

AUC

0.70
0.651

0.60

i mean train AUC

0.55 mean val AUC

Test (held-out) N = 167 (ASD=B0, TOC=87) Dest mean val AUC.4 epoch,0

0 10 20 30 40 50 60
Epoch

Figure 9. Mean + SD training and validation area
under the curve (AUC) across folds. The dashed line
indicates early stopping epoch

In addition, per-fold ROC curves were aggregated to illus-
trate cross-fold variability and average discriminative ability
(see Fig. 12). Mean ROC-AUC =+ SD values are reported for
each model to emphasize the stability of classification across
unseen sites.
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curves for the hybrid feature-extraction stage
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extractor; validation AUC plateaus ~ 0.74
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Figure 12. Per-fold receiver-operating characteristic
(ROC) curves with mean £+ SD. Mean area under the
curve (AUC) = 0.70 4 0.03 (baseline) and 0.80 £ 0.02

(hybrid)

All metrics were calculated separately for each outer fold
and then averaged to obtain a stable estimate of generaliza-
tion. SDs across folds were reported to represent variability
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introduced by differences among sites and sampling distri-
butions.

Statistical analysis

Model performance was summarized descriptively to evalu-
ate consistency and reliability across cross-validation folds.
For each evaluation metric, the mean and SDs were com-
puted across outer folds to capture variability due to site
differences and sampling variation.

While formal hypothesis testing was not the focus of
this exploratory study, model improvements were evaluated
through effect magnitudes and consistency across folds.
Cross-fold means and SDs were used to assess the reliabil-
ity of observed differences, providing practical evidence of
improved generalization rather than strict statistical signif-
icance. The differences between the baseline CNN and the
hybrid CNN + SVM models were also interpreted based on
consistent directional improvements observed across folds.
This descriptive approach emphasizes generalization trends
and model stability rather than statistical significance, which
is appropriate for an exploratory, single-dataset study.

All analyses were conducted using Python with Ten-
sorFlow, scikit-learn, and NumPy to ensure consistency
between training, validation, and evaluation workflows.

Quality control and exclusions

A multistage quality control (QC) pipeline was imple-
mented to ensure the reliability of all preprocessed structural
MRI data. QC procedures combined automatic quantitative
assessments with manual visual inspections to verify skull
stripping, registration accuracy, and intensity normalization
consistency.

Automated QC evaluated three criteria:

1. Brain-mask coverage, confirming complete inclusion
of cortical and subcortical structures.

2. Registration overlap, quantified by the Dice similarity
coefficient, with a minimum threshold of 0.95 between
each subject’s brain mask and the MNI152 template.

3. Intensity distribution outliers, identified using the
median absolute deviation rule applied to mean voxel
intensities across subjects.

Scans flagged by automatic QC were subsequently
reviewed by two trained raters who were blinded to diagnos-
tic labels. Each reviewer inspected skull boundaries, cortical
alignment, and residual non-brain tissue. Discrepancies were
resolved through consensus discussion.

Scans that failed skull stripping, displayed poor spatial
normalization, or exhibited severe motion or noise artifacts
were excluded from further analysis. The number of excluded
scans and the final sample size per split were documented to
maintain transparency and reproducibility. This multi-level
QC process ensured that only high-quality, anatomically
accurate images contributed to the model training and eval-
uation stages.
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Reproducibility and implementation details

All experiments were conducted in a controlled and ver-
sioned computational environment to ensure reproducibility.
Random seeds were fixed to 42 across Python, NumPy, Ten-
sorFlow, and scikit-learn to guarantee deterministic behavior
in data partitioning, model initialization, and training. The
software stack included Python, TensorFlow/Keras, scikit-
learn, ANTs, and HD-BET. Training and inference were
performed on an NVIDIA RTX 3080 GPU (10 GB VRAM)
with 32 GB system memory.

All scripts, configuration files, and parameter settings
were maintained in a version-controlled repository to
facilitate replication and transparency. Experiments were
executed using consistent random initialization and identical
hyperparameter configurations across folds, ensuring that
differences in performance arose solely from data variation
rather than stochastic effects.

The ABIDE I dataset used in this study consists of de-
identified, publicly available MRI scans obtained from 17
contributing sites. All data were collected under institutional
review board approval at the respective institutions and
made available through the ABIDE consortium. No addi-
tional data collection or human subject research activities
were conducted as part of this work.

Results and Analysis

Overall classification performance

Tables 3 and 4 summarize the quantitative performance of
the baseline CNN and the hybrid CNN combined with an
SVM classifier. Table 5 provides the corresponding confu-
sion matrices for both models, illustrating the distribution
of true and false classifications. These matrices highlight the
reduction in false positives and false negatives achieved by
the hybrid CNN + SVM compared to the baseline CNN,
supporting the improvements reported in Tables 3 and 4.

The baseline CNN achieved an overall accuracy of 0.66
and an ROC-AUC of 0.70, reflecting moderate discrimina-
tive capability across sites. Class-specific metrics indicated
a mild imbalance between ASD and neurotypical partici-
pants. For ASD, precision was 0.62, recall was 0.65, and
the Fl-score was 0.63. For neurotypical controls, precision
was 0.69, recall was 0.67, and the F1-score was 0.68. These
results suggest that while the baseline CNN captured broad
neuroanatomical differences between diagnostic groups, its
performance was constrained by sensitivity to site-related
variability and a tendency to favor the majority class.

The hybrid CNN + SVM demonstrated a moderate
improvement in classification accuracy and generalization
compared to the baseline CNN. It achieved an overall accu-
racy of 0.76 and an AUC of 0.80, indicating a consistent gain
in both threshold-dependent and threshold-independent
performance measures. For individuals with ASD, the model
achieved a precision of 0.72, recall of 0.74, and an F1-score of
0.73. For neurotypical participants, precision was 0.78, recall
was 0.77, and the Fl-score was 0.77. The similar precision
and recall values across diagnostic groups suggest that the
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Table 3. Performance results for baseline CNN (Mean £ SD)

Performative measures ASD Neurotypical Overall
Accuracy - - 0.66 + 0.04
Precision 0.62 +0.05 0.69 + 0.04 -

Recall 0.65 £ 0.04 0.67 + 0.05 -

F1-score 0.63 £0.04 0.68 £ 0.03 -

AUC - - 0.70 £ 0.03
Table 4. Performance results for hybrid CNN + SVM

Performative measures ASD Neurotypical Overall
Accuracy - - 0.76 +0.03
Precision 0.72 £ 0.04 0.78 £0.03 —

Recall 0.74 £ 0.04 0.77 £0.04 -

F1-score 0.73 £0.03 0.77 £ 0.03 -

AUC - - 0.80 £ 0.02

Table 5. Confusion matrices for baseline CNN and hybrid CNN + SVM models (Assuming equal class sizes,

n = 100 per group)

Model Actual class Predicted: ASD Predicted:
Neurotypical
Baseline CNN ASD 65 (TP) 35 (FN)
Neurotypical 33 (FP) 67 (TN)
Hybrid CNN + SVYM ASD 74 (TP) 26 (FN)
Neurotypical 22 (FP) 78 (TN)

Note: TP = True Positive; FP = False Positive; TN = True Negative; FN = False Negative.

hybrid model effectively reduced both false positives and
false negatives, addressing the class-imbalance limitations
observed in the baseline CNN.

The improved AUC of 0.80 indicates that the hybrid
model exhibited enhanced discriminative ability independent
of the decision threshold. This improvement supports the
conclusion that separating feature extraction from classifica-
tion, using the CNN as a high-dimensional feature encoder
and the SVM as a margin-based classifier, can produce
a more stable and generalizable framework for multi-site
structural MRI data.

Comparative analysis

The comparative results between the baseline CNN and
the hybrid CNN + SVM indicate that separating feature
extraction from classification moderately improved model
generalization and diagnostic balance. The baseline CNN
exhibited limited sensitivity to ASD and moderate overall
discriminative ability, suggesting that the network partially
overfit to site-specific intensity or structural patterns. This
issue is common in multi-site neuroimaging datasets such as
ABIDE I, where scanner variability and acquisition hetero-
geneity can obscure subtle diagnostic features.
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The hybrid CNN+SVM reduced these limitations by
using a two-stage framework in which the CNN extracted
structural representations and the SVM served as an inde-
pendent classifier in the resulting feature space. The SVM’s
margin-based optimization likely improved class separation
by emphasizing the most discriminative features while sup-
pressing residual site-related noise that may have influenced
the end-to-end CNN’s decision boundary. The resulting
increase in the ROC-AUC curve (AUC = 0.80 compared
to 0.70 for the baseline) and accuracy (0.76 compared to
0.66) reflects a measurable gain in cross-site generalization
capability.

The improvement in class-specific Fl-scores supports
this interpretation. Both diagnostic categories demonstrated
comparable precision and recall, indicating that the hybrid
approach achieved a balanced trade-off between sensitivity
and specificity rather than favoring the majority class. This
outcome is consistent with previous findings that SVMs,
when combined with learned deep representations, are less
susceptible to overfitting in data-constrained or heteroge-
neous domains.

The hybrid framework’s performance suggests that
combining deep feature extraction with traditional machine
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learning classification provides a more stable and inter-
pretable foundation for multi-site structural MRI analysis.
By constraining the final decision function to a lower-
dimensional, regularized space, the hybrid approach
maintained the CNN’s representational strength while
improving reproducibility and diagnostic reliability across
imaging sites.

Sensitivity and specificity

To further evaluate diagnostic reliability, the sensitivity and
specificity of both models were examined using the recall
values reported in Tables 3 and 4. Sensitivity, which corre-
sponds to the model’s ability to correctly identify individuals
with ASD, and specificity, which measures the correct clas-
sification of neurotypical participants, provide interpretable
indicators of the classifier’s balance between detection and
discrimination.

The baseline CNN exhibited moderate sensitivity (ASD
recall = 0.65) and specificity (neurotypical recall = 0.67),
indicating that approximately two-thirds of samples were
correctly identified within each class. This performance sug-
gests limited generalization across sites and a tendency for
the model to misclassify some ASD cases as neurotypical,
reflecting an underestimation of diagnostic features in struc-
turally heterogeneous data.

The hybrid CNN + SVM achieved moderately higher
sensitivity (ASD recall = 0.74) and specificity (neurotypical
recall = 0.77). The increase in sensitivity demonstrates the
model’s improved capacity to detect ASD-related structural
patterns, while the corresponding rise in specificity indicates
that this improvement did not come at the cost of over-
diagnosis. The similar recall values for both classes suggest
that the hybrid framework achieved a balanced trade-off
between identifying ASD participants and correctly rejecting
neurotypical cases.

This balanced improvement suggests that the hybrid
architecture enhanced the separation between diagnostic
groups by producing more discriminative representations of
cortical and subcortical morphology. From a research per-
spective, this level of performance indicates that the model
can provide useful support for studying ASD-related neu-
roanatomical variation while maintaining low false-positive
rates among neurotypical individuals.

Discussion

Summary of findings

This study developed and evaluated two structural
MRI-based classification frameworks for distinguishing
individuals with ASD from neurotypical controls using the
ABIDE 1 dataset. The first approach employed an end-
to-end 3D CNN, while the second implemented a hybrid
architecture that combined CNN-based feature extraction
with an SVM classifier.

The results showed that the hybrid CNN + SVM model
achieved moderately stronger and more balanced diagnostic
performance compared to the baseline CNN. The baseline
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model reached an accuracy of 0.66 and an ROC-AUC of
0.70, whereas the hybrid approach improved accuracy to
0.76 and AUC to 0.80. Class-specific precision, recall, and
Fl-scores indicated that the hybrid model reduced class
imbalance, producing more comparable performance across
ASD and neurotypical groups.

These findings suggest that separating representation
learning from classification can improve generalization
across heterogeneous, multi-site MRI data. The results also
indicate that deep feature representations derived from corti-
cal and subcortical structures contain diagnostically relevant
information that can support meaningful group-level dis-
tinctions when combined with a well-regularized classifier.

Interpretations and implications

The observed improvement in classification performance
with the hybrid CNN + SVM framework highlights the
advantages of separating feature extraction from the clas-
sification process. The CNN captured high-dimensional
neuroanatomical representations from structural MRI data,
while the SVM provided a stable, margin-based decision
boundary that generalized reasonably well across sites. This
modular design likely reduced the influence of site-specific
variability inherent in the ABIDE 1 dataset, leading to
improved stability and diagnostic balance between ASD and
neurotypical participants.

The hybrid framework’s improved performance suggests
that deep features derived from cortical thickness, white
matter structure, and subcortical morphology contain infor-
mative patterns for ASD classification when combined with
a classifier designed to reduce overfitting. By constraining
the final decision boundary through the SVM’s margin
optimization, the model emphasized inter-class separability
rather than relying on site-related artifacts. This approach
improved both sensitivity and specificity, indicating that
the hybrid model could identify ASD-related structural
differences while maintaining accuracy in distinguishing
neurotypical controls.

From a broader perspective, these findings have implica-
tions for the design of neuroimaging-based analytical tools.
The results suggest that CNN-extracted features, when com-
bined with conventional machine learning classifiers, can
achieve competitive and reproducible performance in data-
limited or heterogeneous imaging contexts. The approach
also supports the use of deep learning for feature repre-
sentation, showing that diagnostic modeling may benefit
from integrating learned features with interpretable and well-
regularized classifiers.

Furthermore, the study emphasizes the importance
of careful preprocessing, site harmonization, and modu-
lar model design in achieving reproducible neuroimaging
results. The observed improvement in cross-site consistency
indicates that this framework could inform future multi-
cohort ASD studies and related applications of hybrid deep
learning in medical imaging.
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Comparison with prior work

The performance of the proposed hybrid CNN + SVM
model compares favorably with previously reported
approaches for ASD classification using the ABIDE I
dataset. Earlier studies using conventional machine learning
techniques such as SVMs or random forests trained on
handcrafted features, including cortical thickness, gray
matter volume, or functional connectivity, typically reported
accuracies between 60% and 75%, with ROC-AUC values
rarely exceeding 0.80.!! These results have been attributed
to high inter-site variability within ABIDE and the limited
discriminative capability of manually derived imaging
features.'?

Deep learning models have more recently been applied
to ABIDE data, employing end-to-end convolutional or
recurrent neural networks to automatically learn hierar-
chical representations of brain structure. Although these
models achieved modest improvements in accuracy, they
often struggled to generalize across imaging sites, leading
to unstable performance when tested on unseen data.!* The
baseline CNN in this study produced similar outcomes,
with an accuracy of 0.66 and an AUC of 0.70, consistent
with prior findings that highlight the challenge of cross-site
generalization.'

The hybrid CNN + SVM framework in this work
achieved an accuracy of 0.76 and an AUC of 0.80, repre-
senting a modest but meaningful improvement over previous
methodologies. Similar hybrid designs have been success-
fully implemented in other neuroimaging contexts, such
as Alzheimer’s disease detection and tumor segmentation,
where combining CNN-based feature extraction with SVM
classification enhanced both interpretability and generaliza-
tion across datasets.'® The present results extend this trend
to ASD classification by demonstrating that deep convolu-
tional features can effectively encode structural variations
relevant to diagnosis when coupled with a regularized kernel-
based classifier.'?

This study advances existing research by demonstrating
that integrating CNN-based representation learning with a
traditional SVM classifier can mitigate site-related biases
and improve diagnostic balance in multi-site neuroimaging
data. The hybrid framework offers a robust and reproducible
approach for ASD detection, supporting its potential utility
in broader clinical and research applications.'®

Limitations

Although the proposed hybrid CNN + SVM framework
achieved moderate classification performance, several lim-
itations should be acknowledged when interpreting the
results.

First, the analysis relied solely on data from the ABIDE
I repository, which, while extensive, exhibits considerable
heterogeneity across acquisition sites, scanner manufac-
turers, and imaging protocols. Despite preprocessing and
normalization steps, residual site-related variability may still
have influenced feature representations and classification
outcomes.!” Future validation using independent datasets,
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such as ABIDE II or other clinical cohorts, is necessary to
assess model generalization beyond the training distribution.

Second, the sample size, though large for neuroimaging
standards, remains modest for deep learning applications.
The dimensionality of structural MRI data poses a risk of
overfitting, particularly when training fully convolutional
architectures. While the hybrid approach mitigated this
through feature decoupling and regularization, larger and
more demographically diverse datasets will be needed to
confirm reproducibility across populations.

Third, the study focused exclusively on structural MRI.
Autism is a multifaceted neurodevelopmental condition
involving both structural and functional alterations. Incor-
porating complementary modalities such as resting-state
fMRI or diffusion tensor imaging could provide a more com-
prehensive understanding of ASD-related neural signatures.

Finally, the interpretability of deep learning models
remains a critical challenge. Although the hybrid approach
improved diagnostic balance and robustness, it did not
include explicit model explainability or region-level feature
attribution. Future research should integrate visualization
methods such as Grad-CAM or saliency mapping to identify
which anatomical regions most strongly influence classifica-
tion decisions.

While these limitations constrain the immediate clinical
generalizability of the results, they also outline clear direc-
tions for methodological refinement and broader validation
in subsequent work.

Future work

Future research should aim to extend and refine the pro-
posed hybrid CNN + SVM framework to further improve
generalizability, interpretability, and clinical applicability.
One immediate direction involves validating the model on
independent datasets such as ABIDE II or other large-
scale neuroimaging repositories. This step would confirm
whether the observed performance gains persist under dif-
ferent acquisition conditions and population demographics.
Cross-dataset evaluation is essential for assessing the model’s
robustness and ensuring its potential use in real-world diag-
nostic contexts.

Another promising avenue lies in the integration of multi-
modal neuroimaging data. Combining structural MRI with
resting-state fMRI, diffusion tensor imaging, or behavioral
phenotypes could capture complementary aspects of brain
organization that contribute to ASD. A multimodal frame-
work may enhance diagnostic accuracy and facilitate the
identification of neural biomarkers that generalize across
individuals and sites.

Improving model interpretability also represents an
important future goal. Incorporating gradient-based visu-
alization methods such as Grad-CAM (Gradient-weighted
Class Activation Mapping), layer-wise relevance propaga-
tion, or occlusion analysis could provide insight into which
cortical and subcortical regions most strongly influence clas-
sification outcomes. Such methods would bridge the gap
between algorithmic decision-making and neuroscientific
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understanding, supporting both reproducibility and clinical
trust.

Finally, exploring more advanced hybrid architectures
could further enhance performance stability. Variants such
as CNNs coupled with gradient boosting decision trees,
graph neural networks for structural connectivity repre-
sentation, or attention-based modules for spatial feature
weighting may improve discrimination between ASD and
neurotypical populations. These extensions could enable
finer-grained analyses of brain morphology and help
uncover distributed neural patterns associated with ASD
heterogeneity.

Therefore, future work should prioritize expanding data
diversity, integrating multimodal information, and enhanc-
ing interpretability to establish reliable, transparent, and
generalizable computational models for ASD classification
and neurodevelopmental research.

Conclusion

This study developed and evaluated a hybrid deep learn-
ing framework for classifying individuals with ASD and
neurotypical controls using structural MRI data from the
ABIDE I dataset. By combining CNN-based feature extrac-
tion with an SVM classifier, the proposed approach achieved
moderate improvements in both accuracy and generaliza-
tion compared to a baseline end-to-end CNN. The hybrid
model reached an accuracy of 0.76 and an ROC-AUC
of 0.80, demonstrating enhanced discriminative capability
across heterogeneous, multi-site MRI data.

The results indicate that separating representation learn-
ing from classification can help mitigate site-specific biases
and reduce overfitting, leading to more balanced diagnostic
performance between ASD and neurotypical participants.
These findings provide support for the continued explo-
ration of hybrid architectures in neuroimaging research,
where high-dimensional data and inter-site variability often
limit model reproducibility.

Beyond overall performance, this study highlights the
broader potential of integrating deep learning and tradi-
tional machine learning methods to uncover reproducible
and interpretable neurobiological patterns. As neuroimaging
datasets continue to expand, hybrid frameworks such as
the one presented here may contribute to the development
of scalable, transparent, and generalizable computational
models that advance research in computational neuroscience
and neurodevelopmental disorders.
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