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Introduction

The study of linear forms in logarithms sits at the intersec-
tion of number theory and transcendental number theory. It
provides tools to solve equations of the form:

α
b1
1 α

b2
2 · · · αbn

n = 1

by studying the associated linear form:

� = b1 log α1 + · · · + bn log αn

However, before we explore this form of expression fur-
ther, we first need to understand the basics of transcendental
number theory.

Algebraic and Transcendental Numbers

Basic definitions

Definition 2.1 (Algebraic Number). A complex number
α is algebraic if there exists a nonzero polynomial P ∈ Z[x]
such that P(α) = 0. The minimal degree of such a polynomial
is called its degree.

Example 2.2. The following are algebraic:

• √
2 is algebraic of degree 2, since it satisfies x2−2 = 0.

• The golden ratio φ = 1 + √
5

2
is algebraic of degree 2.

• Any rational number
p
q

is algebraic of degree 1 via qx−
p = 0.
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It is also helpful to note that algebraic numbers are count-
able, since they arise as roots of polynomials with integer
coefficients.

Definition 2.3 (Transcendental Number). A complex
number is transcendental if it is not algebraic; that is, it
does not satisfy any nonzero polynomial equation with integer
coefficients.

Liouville’s theorem and constructed transcen-
dentals

Joseph Liouville’s 1844 theorem was the first major result to
establish a criterion for transcendence.

Theorem 2.4 (Liouville’s Approximation Theorem).
For any irrational algebraic number α of degree d ≥ 2,
there exists a constant C(α) > 0 such that for all rational

numbers
p
q

with q > 0:

∣∣∣∣α − p
q

∣∣∣∣ >
C(α)

qd

Proof . Let P(x) = adxd + · · · + a0 ∈ Z[x] be the minimal
polynomial of α. By the mean value theorem, for any rational
p
q

�= α:

|P(p/q) − P(α)| = |P′(ξ)| ·
∣∣∣∣α − p

q

∣∣∣∣
for some ξ between α and p/q. Since P is irreducible,
P(p/q) �= 0 and qdP(p/q) ∈ Z, so:

|P(p/q)| ≥ 1
qd
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Taking C(α) = 1/(|P′(α)| + 1) completes the bound. �
Liouville’s theorem was the first to give a concrete analytic

tool to distinguish certain irrational numbers from transcen-
dental ones. Although it applies only to algebraic irrationals
of degree at least two, it introduced the crucial idea that alge-
braic numbers cannot be too well-approximated by rationals.
The strength of this result becomes more apparent when con-
trasted with explicit constructions of numbers that violate
this bound, which Liouville cleverly used to create the first
provably transcendental numbers.

Example 2.5 (Liouville’s Constant). The number

L =
∞∑

k=1

1
10k!

= 0.110001000000000000000001000 . . .

is transcendental. For any partial sum
pn

qn
= ∑n

k=1

1
10k!

, we

have:

∣∣∣∣L − pn

qn

∣∣∣∣ <
2

10(n+1)!

But qn = 10n!, so this approximation is much better than
allowed by Liouville’s theorem for algebraic numbers.

The Gelfond–Schneider Theorem

Having established Liouville’s foundational result and intro-
duced the idea of transcendental numbers, we now turn to
a much deeper theorem that marks a major breakthrough
in the subject. For many years after Liouville, the known
examples of transcendental numbers remained artificially
constructed and somewhat isolated from classical constants.
Mathematicians sought to understand whether natural expo-
nential expressions like 2

√
2 or eπ were transcendental, but

existing methods were insufficient. This problem was formal-
ized as Hilbert’s 7th problem, and its resolution came in the
1930s through the independent work of Aleksandr Gelfond
and Theodor Schneider.1 Their theorem established that a
wide class of exponential expressions involving algebraic
numbers are transcendental, giving the first general and nat-
ural transcendence criterion for powers of algebraic numbers
raised to irrational algebraic exponents. What follows is a
proof of this remarkable result.

Theorem 3.1 (Gelfond–Schneider Theorem). If α and β

are algebraic numbers with α �= 0, 1 and β irrational, then αβ

is transcendental.
Proof . We proceed by contradiction. Suppose α �= 0, 1

is algebraic, β is irrational algebraic, and αβ is algebraic.
Define K = Q(α, β, αβ) and let d = [K : Q].

Auxiliary parameters

Let N be a large integer. Define parameters:

L = �N1/2	, τ = �N/ log N	, R = 2N1/2

These control complexity, vanishing, and radius,
respectively.

Remark 3.2. The parameters L, τ , and R are carefully
balanced to ensure the feasibility of our function construction
and analytic estimates. These will appear frequently in our
bounding steps.

The crux of the Gelfond–Schneider proof lies in designing
an analytic function with carefully engineered vanish-
ing properties. Such a function is meant to contradict
the assumption that αβ is algebraic, by exhibiting both
extremely small and nonzero behavior. Constructing this
function—known as an auxiliary function—requires balanc-
ing flexibility with arithmetic control. This step draws from
a blend of ideas from complex analysis, combinatorics, and
algebraic number theory.

Auxiliary function construction

We define:

f (z) =
L∑

k=0

L∑
m=0

pkmαkzzm

where pkm ∈ Z are coefficients to be chosen.

The exponential terms αkz allow zero transfers due
to the identity αz+n = αzαn. The zm terms help impose
derivative vanishing.

Vanishing conditions

We require that:

f (t)(j) = 0 for 0 ≤ j < N, 0 ≤ t < τ

This gives N · τ linear conditions in (L + 1)2 unknowns.
The derivatives:

dt

dzt
[αkzzm] = αkz

min(t,m)∑
s=0

(
t
s

)
m!

(m − s)!
zm−s(log α)t−skt−s

Siegel’s lemma application

We now invoke Siegel’s lemma to guarantee a nontrivial
solution:

Let A be an M × N integer matrix with entries ≤ B.
If M < N, then there exists a nonzero x ∈ ZN such that
Ax = 0 and

max |xi| ≤ (NB)M/(N−M)

Set:

M = Nτ ≈ N2/ log N, N = (L + 1)2 ≈ N, B ≤ (3N)CN

91325005-2 JHSR Open: J. High Sch. Res.

JHSR Open: J. High Sch. Res., 2025, 2(2): 91325005



Siegel’s lemma guarantees bounded pkm with:

max |pkm| ≤ (3N)8dN/ log N

Why this bound? The exponential and derivative
structure inflates the entries in the system; this bound
ensures that a small integer solution still exists.

Extending the zeros

Using the identity αz+n = αz · αn, we obtain:

f (β + n) =
∑
k,m

pkmαkβαkn(β + n)m = αnβg(n)

where

g(z) =
∑
k,m

pkmαkz(z + β)m

So f (β + n) = 0 for n = 0, 1, . . . , N − 1.

Order of vanishing

Let s be the smallest integer such that f (s)(β) �= 0. Then,
s ≥ τ and f have many zeros in a disk around β.

Maximum modulus estimate

We now use a tool from complex analysis to deduce the upper
bounds for the function.

Maximum Modulus Principle: If f is analytic in a
domain D and continuous on D, then |f (z)| attains its
maximum on the boundary ∂D.

On the circle |z| = R = 2N1/2:

|f (z)| ≤ (L + 1)2 · max |pkm| · |α|LR · RL

Substituting:

|f (z)| ≤ N · (3N)8dN/ log N · |α|2N · (2N1/2)N1/2

Taking logs:

log |f (z)| ≤ 8dN
log N

log(3N) + 2N log |α| + N1/2 log(2N1/2)

≤ CN

Schwarz lemma refinement

To complement the global bound obtained via the maxi-
mum modulus principle, we invoke a refined Schwarz-type
lemma to estimate the derivatives near β. This allows us to
bound |f (s)(β)| in terms of the global maximum modulus and
the order of vanishing, setting up a contradiction with the
algebraic lower bound, which we will see in the subsequent
subsection.

Refined Schwarz Lemma: If f has n zeros in |z| < R,
then for |z| = r < R,

|f (z)| ≤ |f (0)|
n∏

k=1

R
|zk|

( r
R

)n
max
|w|=R

|f (w)|

We get:

max |f (z)| ≤
(

R
N

)N·τ
=

(
2

N1/2

)N2/ log N

So:

log |f (z)| ≤ −N2

2
+ o(N2) ⇒ |f (z)| ≤ e−cN2/ log N

Lower bound via Diophantine approximation

Since αβ is assumed algebraic and f (s)(β) �= 0, we apply the
following:

Liouville’s Theorem (for algebraic numbers): Let ξ be
algebraic of degree d ≥ 2. Then, there exists C(ξ) > 0
such that: ∣∣∣∣ξ − p

q

∣∣∣∣ >
C(ξ)

qd

for all rationals p/q.

We write f (s)(β) as a polynomial in α, β, and αβ , with
integer coefficients bounded using earlier results. Hence,

|f (s)(β)| ≥ (3N)−8d2N

Why this bound? This bound is derived by estimating
the minimal polynomial of the algebraic number f (s)(β).
The exponent arises from the number of terms and
height estimates in the auxiliary function.

Cauchy integral bound and contradiction

Using Cauchy’s integral formula:

f (s)(β) = s!
2π i

∫
|z|=R

f (z)
(z − β)s+1

dz

Taking absolute values:

|f (s)(β)| ≤ s! ·2πR
2π(R/2)s+1

· max |f (z)| = s! ·2s+1 · e−cN2/ log N

Rs
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Now s ≥ τ = N/ log N implies s! ≤ eDN/ log N and Rs ≥
(2N1/2)N/ log N . So we get:

|f (s)(β)| ≤ eDN/ log N · e−cN2/ log N

NN/(2 log N)
= e−c′N2/ log N

But this contradicts the lower bound:

(3N)−8d2N ≤ |f (s)(β)| ≤ e−c′N2/ log N

Taking logs:

− 8d2N log(3N) ≤ − c′N2

log N
⇒ Contradiction for large N

�

Proof framework

The proof of the Gelfond–Schneider theorem reflects a gen-
eral template used in transcendence theory:

• Construct an auxiliary function with controlled
complexity.

• Impose vanishing conditions at many points.
• Use functional equations to extend the zeros.
• Bound the size of the function from above using

complex analysis.
• Establish lower bounds via Diophantine approx-

imation.
• Derive a contradiction between the two bounds.

This methodology has been extended to:

• Values of the exponential function at algebraic points
(Hermite–Lindemann).

• Logarithms of algebraic numbers (Gelfond–
Schneider).

• Elliptic and abelian functions at algebraic points
(Schneider).

• Periods of algebraic varieties (conjecturally).

Remark 3.3. The Gelfond–Schneider theorem resolved
part of Hilbert’s 7th problem. It proves that 2

√
2 is transcen-

dental, and that eπ i = −1 involves transcendentality as well.

Baker’s Theory of Linear Forms in
Logarithms

2

The Gelfond–Schneider theorem represents a major
advance in transcendence theory, settling Hilbert’s 7th
problem and providing the first general results for the tran-
scendence of values like αβ , where both α and β are algebraic.
However, many problems in number theory involve more
complicated expressions—particularly linear combinations
of several logarithms of algebraic numbers. A natural ques-
tion arises: What can be said about expressions such as

� = b1 log α1 + b2 log α2 + · · · + bn log αn,

where αi are fixed nonzero algebraic numbers and bi are
integers? If such a form is nonzero, how small can it be in
terms of the sizes of the coefficients and the complexity of
the numbers involved?

In the 1960s, Alan Baker developed a powerful general-
ization of the Gelfond–Schneider theorem, proving that any
nontrivial linear form in logarithms of algebraic numbers
is not only nonzero but also bounded away from zero by
an explicit, effective lower bound. This result, now known
as Baker’s theorem, laid the foundation for a large part of
effective Diophantine analysis and provided new methods
for bounding the size of solutions to exponential equations.

We now state a simplified version of Baker’s theorem,
emphasizing its effectiveness and applicability.

Theorem 4.1 (Baker, 1966). Let α1, . . . , αn be nonzero
algebraic numbers, none equal to 1, and suppose that the
logarithms log αi are taken with respect to a fixed branch of
the logarithm on C\(−∞, 0]. Let b1, . . . , bn ∈ Z, not all zero.
Define

� = b1 log α1 + · · · + bn log αn.

Then. if � �= 0, we have

|�| > exp (−C1 · log B · log A1 · · · log An) ,

where

• B = max{|b1|, . . . , |bn|},
• each Ai ≥ max{Dh(αi), | log αi|, 0.16},
• h(αi) is the (logarithmic) height of αi,
• D is the degree of the number field Q(α1, . . . , αn),
• and C1 is an effectively computable constant depending

only on n and D.

This bound is significant for several reasons. First, it gives
a concrete inequality—if one knows the coefficients bi and
the heights and degrees of the αi, then the right-hand side
becomes a computable quantity. Second, the bound allows
one to conclude that � is not too small. In many number-
theoretic applications, this means that the expression � must
actually be bounded away from zero, and therefore an integer
linear combination of logarithms cannot vanish.

The logarithmic height h(α) measures the arithmetic com-
plexity of an algebraic number. For rational numbers α =
p
q

in lowest terms, we have h(α) = log max{|p|, |q|}. For

general algebraic numbers, this extends via consideration
of the minimal polynomial and the archimedean absolute
values of its conjugates. The appearance of h(αi) in the lower
bound reflects the intuitive idea that the more complicated
the input numbers are, the more flexibility they allow in small
linear combinations.

For a full and rigorous proof of Baker’s theorem, the
reader is referred to Transcendental Number Theory by Alan
Baker.2

It is also worth emphasizing that Baker’s theorem is effec-
tive: the constant C1 can be computed explicitly given the
input data. This is a major departure from earlier transcen-
dence theorems, which often proved existence results without
providing any computational information.
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The power of this theorem is best appreciated through its
applications. For instance, it enables one to solve Diophan-
tine equations involving exponential expressions by first
proving that a certain linear form in logarithms is nonzero
and then bounding how small it can be. These bounds,
though typically extremely small, are nonetheless finite and
lead directly to constraints on the size of possible integer
solutions.

In the next section, we will see how this theoretical result
can be made more practical using a method developed
by Baker and Davenport, which allows one to reduce the
resulting bounds significantly by incorporating ideas from
Diophantine approximation and continued fractions.

Computing Effective Bounds Using Baker’s
Theorem

The true power of Baker’s theorem lies not just in its qualita-
tive assertion of transcendence or linear independence, but in
its capacity to provide explicit lower bounds on expressions
involving logarithms of algebraic numbers. This is crucial in
many Diophantine contexts, where the goal is to prove that
certain equations admit only finitely many solutions, or even
to identify those solutions completely.

Suppose we have algebraic numbers α1, . . . , αn, each not
equal to 0 or 1, and define the linear form:

� = b1 log α1 + · · · + bn log αn

where the coefficients b1, . . . , bn are integers, not all simulta-
neously zero. We assume � �= 0. The question is: How small
can |�| be?

Baker’s theorem provides a compelling answer. If we let
B = max |bi|, let h(αi) denote the logarithmic height of αi,
and let D be the degree of the number field generated by all
αi, then there exists a computable constant C1, depending
only on n and D, such that:

|�| > exp (−C1 · (log B)(log A1) · · · (log An))

Here, each Ai is defined as:

Ai = max{Dh(αi), | log αi|, 0.16}
To see this in action, consider the expression � = x log 2−

y log 3, which arises in problems like finding solutions to
2x = 3y. If x, y ≤ 1000, then B = 1000, and both 2 and 3 are
rational, so h(2) = log 2, h(3) = log 3, and D = 1.

Plugging in, the bound becomes:

|�| > exp (−C1 · log(1000) · log log 2 · log log 3)

With standard estimates for the logarithms and C1 on
the order of 104, we find that the lower bound is something
like 10−10000. While seemingly negligible, this value is not
zero—and that makes all the difference. This bound guar-
antees a minimum separation between linear combinations
of logarithms of algebraic numbers, allowing us to eliminate
hypothetical integer solutions with large coordinates.

Although the exponential decay in the bound may feel
extreme, especially for large B, its explicit nature makes
it useful in practice. It opens the door to computational
refinements such as the Baker–Davenport method, which we
now explore.

Despite the strength of Baker’s bounds, their numerical
size often makes them impractical for direct computation.
The Baker–Davenport method addresses this limitation. It
combines the theoretical guarantees from Baker’s theorem
with elementary tools like continued fractions to dramati-
cally reduce the bound and isolate the few possible solutions.
This hybrid approach bridges the gap between transcenden-
tal number theory and concrete problem-solving.

Matveev’s Refinement of Linear Form
Bounds

Baker’s theorem provides an effective lower bound for lin-
ear forms in logarithms, but the constants involved can
be extremely large in practice, limiting the usability of the
bounds in computational settings. In 2000, E. M. Matveev
introduced a major refinement of these bounds, leading to
significantly sharper estimates and better constants for a
wide class of problems.3

Matveev’s theorem applies to linear forms in loga-
rithms of algebraic numbers and provides fully explicit
lower bounds that are often several orders of magnitude
smaller than those obtained from Baker’s original result.
These improvements are especially noticeable in applications
involving small-degree algebraic numbers or when the loga-
rithmic heights of the numbers are moderate.

In simplified form, Matveev’s bound states that for alge-
braic numbers α1, . . . , αn ∈ Q

×
, and nonzero integers

b1, . . . , bn, if � = b1 log α1 + · · · + bn log αn �= 0, then

|�| > exp(−C(n) · D2 · (1 + log D)(1 + log B)

(log A1) · · · (log An)),

where

• D is the degree of the number field generated by the
αi,

• B = max{|bi|},
• Ai ≥ h(αi) are bounds on the logarithmic heights,
• and C(n) is an explicit constant depending only on n.

Although this expression resembles Baker’s original bound
structurally, Matveev’s constants are much more favorable.
This makes it possible to use the resulting inequalities
directly in computations, particularly in bounding solutions
to exponential Diophantine equations.

Modern applications often rely on Matveev’s version of
the bound for practical results. For example, in determining
perfect powers in linear recurrence sequences or resolv-
ing variants of the Ramanujan–Nagell equation, Matveev’s
bound can reduce the upper bounds for unknowns from
astronomical values to within computational reach.
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Remark 6.1. For a full proof of Matveev’s result and its
many variants, the reader is referred to his 2000 paper in the
Izvestiya: Mathematics journal.3

The Baker–Davenport Reduction Method

While Baker’s theorem provides an explicit lower bound on
|�|, the bound is often so tiny that it alone cannot exclude
large integer solutions from consideration. The Baker–
Davenport method bridges this gap. It strengthens the
application of Baker’s bound by combining it with elemen-
tary yet powerful tools from Diophantine approximation,
particularly continued fractions. This method was intro-
duced in a collaborative paper by Baker and Davenport.4

The basic idea is to recast the inequality |�| > δ into a
statement about how well a rational number can approxi-
mate a certain irrational one. Suppose we have:

� = x log α − y log β �= 0

We divide both sides by x log β to obtain:
∣∣∣∣ log α

log β
− y

x

∣∣∣∣ >
δ

|x log β|

This inequality shows that
y
x

is not too close to the

irrational number log α/ log β. If we can find rational
approximations to log α/ log β that are closer than the bound
allows, we can rule them out as candidates. Conversely, we
may use the convergents of the continued fraction expansion
of log α/ log β to approximate this ratio and compare them
to known integer solutions.

This technique allows us to zoom in on potential solutions
with small values of x and y, sharply reducing the upper
bounds that arise from Baker’s theorem. In this way, what
was initially a massive bound, say x < 1020, can often be
brought down to something like x < 100, making a brute-
force search feasible.

Thus, the Baker–Davenport method transforms a the-
oretical lower bound into a practical algorithm. It is this
combination of transcendental number theory and computa-
tional approximation that makes the method one of the most
effective tools in solving exponential Diophantine equations.

Worked example: solving 2x − 3y = 1

Consider the equation 2x − 3y = 1. This problem asks for
pairs of integers (x, y) such that the difference between a
power of two and a power of three equals one. Rearranging,
we get:

2x = 3y + 1

Taking logarithms, we find:

x log 2 = log(3y + 1)

For large y, 3y + 1 is very close to 3y, and so:

x log 2 ≈ y log 3

which leads to: ∣∣∣∣ log 2
log 3

− y
x

∣∣∣∣ ≈ very small

Now, using the continued fraction expansion of
log 2/ log 3 ≈ 0.6309, we compute convergents such as 2/3,
3/5, 8/13, and so on. Each of these gives a candidate rational
approximation y/x. For each such pair (x, y), we check
whether it satisfies the original equation.

Trying x = 1, we find:

21 = 2, 30 = 1, 2 − 1 = 1 ⇒ solution found: (x, y)

= (1, 0)

Trying x = 2, we find:

22 = 4, 31 = 3, 4 − 3 = 1 ⇒ solution found: (x, y)

= (2, 1)

Trying x = 4 yields 24 = 16, but 32 = 9 and 16 − 9 =
7, which does not satisfy the equation. As we continue this
process, we find that all other convergents violate the bound
imposed by Baker’s theorem and refined by the continued
fraction approximation.

Eventually, this method eliminates all possible solutions
except (1, 0) and (2, 1). In this way, the Baker–Davenport
method provides a complete and rigorous resolution of the
Diophantine equation.

Applications to Diophantine Equations

Perfect powers in recurrence sequences

One particularly striking application of linear forms in log-
arithms arises in the analysis of perfect powers appearing
within classical recurrence sequences. A natural example is
the Fibonacci sequence (Fn), defined by F0 = 0, F1 = 1, and
the recurrence relation Fn+2 = Fn+1 + Fn.

The question we now pose is whether the Fibonacci
sequence contains any perfect squares beyond the trivial
examples. Indeed, it is easy to check that F0 = 0, F1 = F2 =
1, and F12 = 144 = 122. But are there any others?

To address this, one begins by recalling the closed-form
expression for Fn, known as Binet’s formula:

Fn = φn − ψn

√
5

where φ = 1 + √
5

2
is the golden ratio and ψ = 1 − √

5
2

is its algebraic conjugate. As n grows, the term ψn becomes
negligible since |ψ | < 1, so we approximate:

Fn ≈ φn

√
5

Now, suppose Fn is a perfect square, say Fn = y2 for some
integer y. Then:

φn

√
5

≈ y2 ⇒ φn ≈ √
5y2
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Taking logarithms on both sides, we obtain:

n log φ ≈ log
√

5 + 2 log y

and hence,
∣∣∣n log φ − 2 log y − log

√
5
∣∣∣ ≈ 0

This is now a linear form in logarithms of algebraic
numbers: n log φ−2 log y−log

√
5. Applying Baker’s theorem

to this expression provides an effective lower bound on its
absolute value, which in turn leads to an explicit upper
bound on n. Typically, the bound from Baker’s theorem is
large, but it can be substantially reduced using the Baker–
Davenport method.

Once an upper bound is known, one simply checks all
Fibonacci numbers Fn for n up to that bound and verifies
whether any of them is a perfect square. Such an analysis
shows that the only values of n for which Fn is a perfect
square are n = 0, 1, 2, 12. No other Fibonacci numbers are
perfect squares.

This type of argument, which combines the closed-form
representation of a recurrence with bounds on linear forms
in logarithms, has proven extremely effective in answering
questions about perfect powers in recurrence sequences more
generally.

The Thue equation

Another important application of Baker’s theory involves
solving Thue equations. These are Diophantine equations of
the form:

F(x, y) = m

where F(x, y) is an irreducible homogeneous binary form
of degree at least three with integer coefficients, and m is
a nonzero integer. The classic result due to Thue tells us
that for a fixed F and m, this equation has only finitely
many integer solutions (x, y). However, Thue’s original proof
is ineffective—it gives no means to compute or bound the
solutions.

Baker’s theory changes this entirely. It allows us to trans-
form the problem into a system involving linear forms in
logarithms, thereby furnishing explicit upper bounds on |x|
and |y|.

The argument begins by factorizing the binary form
F(x, y) over the algebraic closure of Q. Suppose we have:

F(x, y) =
d∏

i=1

(αix − βiy)

where the αi, βi lie in some finite extension of Q, and d ≥ 3
is the degree of F . Now, since F(x, y) = m, we see that for at
least one index i, the quantity |αix − βiy| must be small—no
larger than roughly |m|1/d .

This gives us an approximation:
∣∣∣∣αi

x
y

− βi

∣∣∣∣ 
 |y|−d

Taking logarithms, we consider expressions of the form:

log

∣∣∣∣αi
x
y

− βi

∣∣∣∣

These are precisely the kinds of quantities to which
Baker’s bounds apply. Using the theory of linear forms in
logarithms, we can place explicit lower bounds on such log-
arithmic expressions. Matching this with the upper bounds
obtained from the factorization and the size of m, we deduce
explicit upper bounds on |x| and |y|.

Once those bounds are known, even if large, they reduce
the original infinite problem to a finite one: we simply need
to check all integer pairs (x, y) within the bounded region to
find all solutions to the Thue equation.

In practice, further refinements, often using reduction
techniques and continued fraction approximations, can
decrease the computational load significantly. This makes
Baker’s theory not only theoretically satisfying but also prac-
tically viable for determining the complete set of solutions to
many Diophantine equations once thought intractable.

Conclusion

Linear forms in logarithms form a central part of modern
transcendental number theory, providing explicit techniques
for dealing with exponential Diophantine equations. What
distinguishes this area is not only its ability to prove the
transcendence of certain numbers but also its effectiveness
in yielding concrete numerical bounds on the size of integer
solutions. This paper has shown how classical theorems like
those of Liouville and Gelfond–Schneider lay the foundation
for Baker’s general result. Through Baker’s theorem and its
computational refinements, especially the Baker–Davenport
method, we obtained tools capable of producing meaningful
results in practice. The examples examined, from exponential
equations such as 2x = 3y + 1 to the study of perfect
powers in recurrence sequences, illustrate how linear forms
in logarithms can be used to fully resolve equations that
otherwise admit infinitely many possibilities.

Although the bounds provided by Baker’s theorem are
often too large for direct application, methods like con-
tinued fraction approximation allow one to reduce them
substantially. This combination of transcendental estimates
with classical number-theoretic techniques is what gives the
method its strength.
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